Search by property

Jump to: navigation, search

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has conclusion" with value "In this paper, we proposed novel optimization techniques for efficient SPARQL query processing in the federated setting. As revealed by our benchmarks, bound joins combined with our grouping and source selection approaches are effective in terms of performance. By minimizing the number of intermediate requests, we are able to improve query performance significantly compared to state-of-the-art systems. We presented FedX, a practical solution that allows for querying multiple distributed Linked Data sources as if the data resides in a virtually integrated RDF graph. Compatible with the SPARQL 1.0 query language, our framework allows clients to integrate available SPARQL endpoints on-demand into a federation without any local preprocessing. While we focused on optimization techniques for conjunctive queries, namely basic graph patterns (BGPs), there is additional potential in developing novel, operator-specific optimization techniques for distributed settings (in particular for OPTIONAL queries), which we are planning to address in future work. As our experiments confirm, the optimization of BGPs alone (combined with common equivalent rewritings) already yields significant performance gains. Important features for federated query processing are the federation extensions proposed for the upcoming SPARQL 1.1 language definition. These allow to specify data sources directly within the query using the SERVICE operator, and moreover to attach mappings to the query as data using the BINDINGS operator. When implementing the SPARQL 1.1 federation extensions for our next release,FedX can exploit these language features to further improve performance. In fact, the SPARQL 1.1 SERVICE keyword is a trivial extension, which enhances our source selection approach with possibilities for manual specification of new sources and gives the query designer more control. Statistics can in uence performance tremendously in a distributed setting. Currently, FedX does not use any local statistics since we follow the design goal of on-demand federation setup. We aim at providing a federation framework, in which data sources can be integrated ad-hoc, and used immediately for query processing. In a future release, (remote) statistics (e.g., using VoID ) can be incorporated for source selection and to further improve our join order algorithm.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • FedX: Optimization Techniques for Federated Query Processing on Linked Data  + (In this paper, we proposed novel optimizat
      In this paper, we proposed novel optimization techniques for efficient SPARQL query processing in the federated setting. As revealed by our benchmarks, bound joins combined with our grouping and source selection approaches are effective in terms of performance. By minimizing the number of intermediate requests, we are able to improve query performance significantly compared to state-of-the-art systems. We presented FedX, a practical solution that allows for querying multiple distributed Linked Data sources as if the data resides in a virtually integrated RDF graph. Compatible with the SPARQL 1.0 query language, our framework allows clients to integrate available SPARQL endpoints on-demand into a federation without any local preprocessing. While we focused on optimization techniques for conjunctive queries, namely basic graph patterns (BGPs), there is additional potential in developing novel, operator-specific optimization techniques for distributed settings (in particular for OPTIONAL queries), which we are planning to address in future work. As our experiments confirm, the optimization of BGPs alone (combined with common equivalent rewritings) already yields significant performance gains. Important features for federated query processing are the federation extensions proposed for the upcoming SPARQL 1.1 language definition. These allow to specify data sources directly within the query using the SERVICE operator, and moreover to attach mappings to the query as data using the BINDINGS operator. When implementing the SPARQL 1.1 federation extensions for our next release,FedX can exploit these language features to further improve performance. In fact, the SPARQL 1.1 SERVICE keyword is a trivial extension, which enhances our source selection approach with possibilities for manual specification of new sources and gives the query designer more control. Statistics can in uence performance tremendously in a distributed setting. Currently, FedX does not use any local statistics since we follow the design goal of on-demand federation setup. We aim at providing a federation framework, in which data sources can be integrated ad-hoc, and used immediately for query processing. In a future release, (remote) statistics (e.g., using VoID ) can be incorporated for source selection and to further improve our join order algorithm.
      further improve our join order algorithm.)