Information for "Adaptive Integration of Distributed Semantic Web Data"

Jump to: navigation, search

Basic information

Display titleAdaptive Integration of Distributed Semantic Web Data
Default sort keyAdaptive Integration of Distributed Semantic Web Data
Page length (in bytes)4,062
Page ID36163
Page content languageen - English
Page content modelwikitext
Indexing by robotsAllowed
Number of redirects to this page0
Counted as a content pageYes

Page protection

EditAllow all users (infinite)
MoveAllow all users (infinite)

Edit history

Page creatorSaid (talk | contribs)
Date of page creation12:03, 27 June 2018
Latest editorSaid (talk | contribs)
Date of latest edit22:14, 11 July 2018
Total number of edits5
Total number of distinct authors1
Recent number of edits (within past 90 days)0
Recent number of distinct authors0

Page properties

Transcluded templates (4)

Templates used on this page:

Access APINo data available now. +
Event in seriesDNIS +
Has BenchmarkDBPedia +
Has ChallengesNo data available now. +
Has DataCatalougePredicate List during setup phase +
Has DescriptionNo data available now. +
Has DimensionsPerformance +
Has DocumentationURLhttp://No data available now. +
Has Downloadpagehttp://No data available now. +
Has EvaluationPerformance Analysis +
Has EvaluationMethodNo data available now. +
Has ExperimentSetupEndpoint machines are connected to the machine on which the mediator is deployed (2GHz AMD Athlon X2, 2GB RAM) via a 100Mbs Ethernet LAN. +
Has GUIYes +
Has HypothesisNo data available now. +
Has ImplementationADERIS +
Has InfoRepresentationRDF +
Has LimitationsNo data available now. +
Has NegativeAspectsNo data available now. +
Has PositiveAspectsNo data available now. +
Has RequirementsNo data available now. +
Has ResultsNo data available now. +
Has SubproblemNo data available now. +
Has VersionNo data available now. +
Has abstractThe use of RDF (Resource Description Frame
The use of RDF (Resource Description Framework) data is a cornerstone of the Semantic Web. RDF data embedded in Web pages may be indexed using semantic search engines, however, RDF data is often stored in databases, accessible viaWeb Services using the SPARQL query language for RDF, which form part of the Deep Web which is not accessible using search engines. This paper addresses the problem of effectively integrating RDF data stored in separate Web-accessible databases. An approach based on distributed query processing is described, where data from multiple repositories are used to construct partitioned tables that are integrated using an adaptive query processing technique supporting join reordering, which limits any reliance on statistics and metadata about SPARQL endpoints, as such information is often inaccurate or unavailable, but is required by existing systems supporting federated SPARQL queries. The approach presented extends existing approaches in this area by allowing tables to be added to the query plan while it is executing, and shows how an approach currently used within relational query processing can be applied to distributed SPARQL query processing. The approach is evaluated using a prototype implementation and potential applications are discussed.
and potential applications are discussed. +
Has approachDistributed Query Processing +
Has authorsSteven Lynden +, Isao Kojima +, Akiyoshi Matono + and Yusuke Tanimura +
Has conclusionAn adaptive framework has been presented f
An adaptive framework has been presented for executing queries over multiple SPARQL endpoints that differs from existing approaches which use static query optimisation techniques. Many SPARQL web services are currently available and the number of them is growing. The work presented in this paper is a framework for executing queries over federations of such services. The framework proposed in this paper, which allows adaptive query processing over dynamically constructed predicate tables to be performed in conjunction with the construction of the predicate tables, was shown to perform relatively well in unpredictable environments where source query failures may occur. The prototype implemented was evaluated using real data, showing some advantage in terms of response times of adaptive over non-adaptive methods using a subset of DBPedia..
aptive methods using a subset of DBPedia.. +
Has future workFuture work will aim to investigate other
Future work will aim to investigate other data sets with different characteristics and larger data sets. As the approach presented in this paper focuses on efficiently executing a specific kind of query, that of adaptively ordering multiple joins, further work will focus on optimising other kinds of queries and implementing support for more SPARQL query language features. Future work will also concentrate on investigating how the work can be applied in various domains.
he work can be applied in various domains. +
Has motivationNo data available now. +
Has platform- +
Has problemSPARQL Query Federation +
Has relatedProblemNo data available now. +
Has subjectQuerying Distributed RDF Data Sources +
Has vendorNo data available now. +
Has year2010 +
ImplementedIn ProgLangJava +
Proposes AlgorithmNo data available now. +
RunsOn OSOS independent +
TitleAdaptive Integration of Distributed Semantic Web Data +
Uses FrameworkNo data available now. +
Uses MethodologyNo data available now. +
Uses ToolboxNo data available now. +