Edit Paper: Adaptive Integration of Distributed Semantic Web Data

Jump to: navigation, search

You do not have permission to edit this page, for the following reason:

The action you have requested is limited to users in the group: Users.


Adaptive Integration of Distributed Semantic Web Data

Abstract[edit]

[[has abstract:={{{Abstract}}}]]

Conclusion[edit]

[[has conclusion:={{{Conclusion}}}]]

Future work[edit]

[[has future work:={{{Future work}}}]]

Approach[edit]

Positive Aspects: [[Has PositiveAspects::{{{PositiveAspects}}}]]

Negative Aspects: [[Has NegativeAspects::{{{NegativeAspects}}}]]

Limitations: [[Has Limitations::{{{Limitations}}}]]

Challenges: [[Has Challenges::{{{Challenges}}}]]

Proposes Algorithm: [[Proposes Algorithm::{{{ProposesAlgorithm}}}]]

Methodology: [[uses Methodology::{{{Methodology}}}]]

Requirements: [[Has Requirements::{{{Requirements}}}]]

Limitations: [[Has Limitations::{{{Limitations}}}]]

Implementations[edit]

Download-page: [[Has Downloadpage::{{{Download-page}}}]]

Access API: [[access API::{{{API}}}]]

Information Representation: [[Has InfoRepresentation::{{{InfoRepresentation}}}]]

Data Catalogue: [[Has DataCatalouge::{{{Catalogue}}}]]

Runs on OS: [[ runsOn OS::{{{OS}}}]]

Vendor: [[Has vendor::{{{vendor}}}]]

Uses Framework: [[Uses Framework::{{{Framework}}}]]

Has Documentation URL: [[Has DocumentationURL::{{{DocumentationURL}}}]]

Programming Language: [[implementedIn ProgLang::{{{ProgLang}}}]]

Version: [[has Version ::{{{Version}}}]]

Platform: [[has platform::{{{Platform}}}]]

Toolbox: [[uses Toolbox::{{{Toolbox}}}]]

GUI: has GUI::No

Research Problem[edit]

Subproblem of: [[Has Subproblem::{{{Subproblem}}}]]

RelatedProblem: [[Has relatedProblem::{{{RelatedProblem}}}]]

Motivation: [[Has motivation::{{{Motivation}}}]]

Evaluation[edit]

Experiment Setup: [[Has ExperimentSetup::{{{ExperimentSetup}}}]]

Evaluation Method : [[Has EvaluationMethod::{{{EvaluationMethod}}}]]

Hypothesis: [[Has Hypothesis::{{{Hypothesis}}}]]

Description: [[Has Description::{{{Description}}}]]

Dimensions: [[Has Dimensions::{{{Dimensions}}}]]

Benchmark used: [[has Benchmark::{{{Benchmark}}}]]

Results: [[Has Results::{{{Results}}}]]


[edit]
Paper Title*: Full title of the given paper
Subject: Primary subject or topic of research of the paper.
Author(s):
Publication venue: Publication venue of the paper.
Year: The year in which the paper is published.
Keywords:
Abstract: Abstract of the paper.
Conclusion:
Future work: Future ideas of the paper.
Problem: The research problem.
Approach: Approach used to achieve the goal.
Implementation: The implementation/framework that is invoked when running.
Evaluation: Proposed work Evaluation.
Positive Aspects:
Negative Aspects:
Limitations:
Challenges:
Proposes Algorithm:
Proposes Model:
Methodology:
Requirements:
Download-page:
Access API:
Information Representation:
Data Catalogue:
OS:
Vendor: Organization: commercial, free or otherwise
Uses Framework: Framework name
Documentation URL: Link to Documentation webpage.
Programming Language:
Version:
Platform:
Toolbox:
GUI: whether the implementation has a GUI?
Subproblem of: A broader research problem.
Related Problem: A another research problem.
Motivation: The motivation to solve the problem.


Experiment setup:
Evaluation method : A broader research problem.
Hypothesis: A another research problem.
Description: The motivation to solve the problem.
Dimensions:
Select evaluation dimension.
Benchmark: Benchmark used for evaluation.
Results:



Paper description:

Cancel

Access APINo data available now. +
Event in seriesDNIS +
Has BenchmarkDBPedia +
Has ChallengesNo data available now. +
Has DataCatalougePredicate List during setup phase +
Has DescriptionNo data available now. +
Has DimensionsPerformance +
Has DocumentationURLhttp://No data available now. +
Has Downloadpagehttp://No data available now. +
Has EvaluationPerformance Analysis +
Has EvaluationMethodNo data available now. +
Has ExperimentSetupEndpoint machines are connected to the machine on which the mediator is deployed (2GHz AMD Athlon X2, 2GB RAM) via a 100Mbs Ethernet LAN. +
Has GUIYes +
Has HypothesisNo data available now. +
Has ImplementationADERIS +
Has InfoRepresentationRDF +
Has LimitationsNo data available now. +
Has NegativeAspectsNo data available now. +
Has PositiveAspectsNo data available now. +
Has RequirementsNo data available now. +
Has ResultsNo data available now. +
Has SubproblemNo data available now. +
Has VersionNo data available now. +
Has abstractThe use of RDF (Resource Description Frame …
The use of RDF (Resource Description Framework) data is a cornerstone of the Semantic Web. RDF data embedded in Web pages may be indexed using semantic search engines, however, RDF data is often stored in databases, accessible viaWeb Services using the SPARQL query language for RDF, which form part of the Deep Web which is not accessible using search engines. This paper addresses the problem of effectively integrating RDF data stored in separate Web-accessible databases. An approach based on distributed query processing is described, where data from multiple repositories are used to construct partitioned tables that are integrated using an adaptive query processing technique supporting join reordering, which limits any reliance on statistics and metadata about SPARQL endpoints, as such information is often inaccurate or unavailable, but is required by existing systems supporting federated SPARQL queries. The approach presented extends existing approaches in this area by allowing tables to be added to the query plan while it is executing, and shows how an approach currently used within relational query processing can be applied to distributed SPARQL query processing. The approach is evaluated using a prototype implementation and potential applications are discussed.
and potential applications are discussed. +
Has approachDistributed Query Processing +
Has authorsSteven Lynden +, Isao Kojima +, Akiyoshi Matono + and Yusuke Tanimura +
Has conclusionAn adaptive framework has been presented f …
An adaptive framework has been presented for executing queries over multiple SPARQL endpoints that differs from existing approaches which use static query optimisation techniques. Many SPARQL web services are currently available and the number of them is growing. The work presented in this paper is a framework for executing queries over federations of such services. The framework proposed in this paper, which allows adaptive query processing over dynamically constructed predicate tables to be performed in conjunction with the construction of the predicate tables, was shown to perform relatively well in unpredictable environments where source query failures may occur. The prototype implemented was evaluated using real data, showing some advantage in terms of response times of adaptive over non-adaptive methods using a subset of DBPedia..
aptive methods using a subset of DBPedia.. +
Has future workFuture work will aim to investigate other …
Future work will aim to investigate other data sets with different characteristics and larger data sets. As the approach presented in this paper focuses on efficiently executing a specific kind of query, that of adaptively ordering multiple joins, further work will focus on optimising other kinds of queries and implementing support for more SPARQL query language features. Future work will also concentrate on investigating how the work can be applied in various domains.
he work can be applied in various domains. +
Has motivationNo data available now. +
Has platform- +
Has problemSPARQL Query Federation +
Has relatedProblemNo data available now. +
Has subjectQuerying Distributed RDF Data Sources +
Has vendorNo data available now. +
Has year2010 +
ImplementedIn ProgLangJava +
Proposes AlgorithmNo data available now. +
RunsOn OSOS independent +
TitleAdaptive Integration of Distributed Semantic Web Data +
Uses FrameworkNo data available now. +
Uses MethodologyNo data available now. +
Uses ToolboxNo data available now. +