A Probabilistic-Logical Framework for Ontology Matching

From Openresearch
Revision as of 08:50, 3 July 2018 by Said (talk | contribs)
Jump to navigation Jump to search
A Probabilistic-Logical Framework for Ontology Matching
A Probabilistic-Logical Framework for Ontology Matching
Bibliographical Metadata
Subject: Ontology Matching
Year: 2010
Authors: Mathias Niepert, Christian Meilicke, Heiner Stuckenschmidt
Venue AAAI
Content Metadata
Problem: No data available now.
Approach: No data available now.
Implementation: ml-match
Evaluation: Using thresholds on the a-priori similarity measure

Abstract

Ontology matching is the problem of determining correspondences between concepts, properties, and individuals of different heterogeneous ontologies. With this paper we present a novel probabilistic-logical framework for ontology matching based on Markov logic. We define the syntax and semantics and provide a formalization of the ontology matching problem within the framework. The approach has several advantages over existing methods such as ease of experimentation, incoherence mitigation during the alignment process, and the incorporation of apriori confidence values. We show empirically that the approach is efficient and more accurate than existing matchers on an established ontology alignment benchmark dataset.

Conclusion

We presented a Markov logic based framework for ontology matching capturing a wide range of matching strategies. Since these strategies are expressed with a unified syntax and semantics we can isolate variations and empirically evaluate their effects. Even though we focused only on a small subset of possible alignment strategies the results are already quite promising. We have also successfully learned weights for soft formulae within the framework. In cases where training data is not available, weights set manually by experts still result in improved alignment quality. Research related to determining appropriate weights based on structural properties of ontologies is a topic of future work.

Future work

The framework is not only useful for aligning concepts and properties but can also include instance matching. For this purpose, one would only need to add a hidden predicate modeling instance correspondences. The resulting matching approach would immediately benefit from probabilistic joint inference, taking into account the interdependencies between terminological and instance correspondences.

Approach

Positive Aspects: No data available now.

Negative Aspects: No data available now.

Limitations: No data available now.

Challenges: No data available now.

Proposes Algorithm: No data available now.

Methodology: No data available now.

Requirements: No data available now.

Limitations: No data available now.

Implementations

Download-page: http://code.google.com/p/ml-match/

Access API: No data available now.

Information Representation: No data available now.

Data Catalogue: {{{Catalogue}}}

Runs on OS: No data available now.

Vendor: No data available now.

Uses Framework: TheBeast

Has Documentation URL: https://code.google.com/archive/p/ml-match/wikis/MLExample.wiki

Programming Language: No data available now.

Version: No data available now.

Platform: No data available now.

Toolbox: No data available now.

GUI: No

Research Problem

Subproblem of: No data available now.

RelatedProblem: No data available now.

Motivation: No data available now.

Evaluation

Experiment Setup: All experiments were conducted on a desktop PC with AMD Athlon Dual Core Processor 5400B with 2.6GHz and 1GB RAM.

Evaluation Method : No data available now.

Hypothesis: No data available now.

Description: We applied the reasoner Pellet (Sirin et al. 2007) to create the ground MLN formulation and used TheBeast2 (Riedel 2008) to convert the MLN formulations to the corresponding ILP instances. Finally, we applied the mixed integer programming solver SCIP3 to solve the ILP.

Dimensions: {{{Dimensions}}}

Benchmark used: Ontofarm dataset (Svab et al. 2005)

Results: No data available now.